Skip to main content

Subwoofer Design - Order Acoustic Suspension

Order Acoustic Suspension Basic Theory:

The driver is mounted in a sealed, airtight enclosure, generally with the front of the driver facing outward but is not restricted to this method only. The volume of the enclosure is chosen to achieve a desired system Q which defines the response characteristics of the driver and enclosure. Q values may range between the 0.5 and 1.5 - with 0.5 being overdamped, 1.5 being underdamped, and 0.7 being critically damped or flat. The total system Q (also known as Qtc) is dependent on 3 things: the volume of enclosure, the T/S parameters of driver and internal treatment compounds. A a general rule only, sealed enclosures may be best suited for drivers with an EBP (Efficiency Bandwidth Product) of 50.0 or lower and drivers with Qts values above 0.40 but is not restricted to these exact values. EBP is calculated by taking the the fs of the driver and dividing it by the Qes - therefore EBP = fs/Qes. The cutoff rate is typically 12 dB/octave below f3, however higher system Q's result is a somewhat sharper roll-off (~14 dB/octave) while lower system Q's result in a slightly more shallow roll-off (~10 dB/octave). Better damping and better transients are achieved by shooting for a lower system Q which can
be accomplished by either making the enclosure larger or by adding stuffing/damping material. Suitable damping materials include polyfill, Dacron, fiberglass, and acoustic foam. Box stuffing will also affect f3 by either raising it or lowering it depending upon the type and amount of stuffing used. Stuffing makes the box "appear" to be acoustically larger than it really is.

Order Acoustic Suspension Advandages:

2nd order sealed enclosures are simple to design and offer outstanding performance in a wide variety of applications. They are easy to model with software and get predicted results. Box size and shape are generally the least complex. Great for both beginning and advanced DIY’ers. The exact desired response characteristics can be achieved by simply designing for a particular Qtc (or system Q). Modeled performance is easily altered by varying the size of the enclosure and/or the amount of stuffing material used. They exhibit a very shallow cutoff rate of 12 db/octave below fB. This results in much better group delay response. Fast, quick, natural, smooth, tight, accurate, controlled and warm are some common subjective terms one might use to describe sealed enclosures. Transient response is the best of all enclosure types. The excursion of the driver increases as the frequency applied decreases until fB is reached after which the driver excursion begins to decrease. There is typically no need for subsonic filtering due to the enclosure’s natural tendency to inhibit extremely low frequencies. This results in less bottoming out of drivers at subsonic frequencies. However, this only applies for smaller enclosures. As the enclosure size gets larger, more Xmax is required in order to prevent overexertion for the same amount of input power. Sealed enclosures have more extended low frequency response than vented enclosures given the same f3 for both due to the shallower rate of roll-off. Phase shift is minimal within its normal operating frequency range.

Order Acoustic Suspension Disadvandages:
Very low frequency output is difficult to achieve without active filtering. The f3 (also know as 3dB down point) is usually fairly high, above 30 Hz in most applications and by simply increasing Vb, one cannot lower f3 for any given driver. Low f3's in a sealed enclosure can be achieved by using drivers with a very low free air resonance or Fs. Less power efficient by about -3 dB as compared with vented enclosures. Lower over SPL capabilities. There's a strong need for drivers with a very large Xmax in order to ensure safe operation at least down to fB, especially if the box is designed for Qtc values < 0.7 Any enclosure volume that is modeled with the system Q larger than 0.707 results in higher f3. Lowest f3 is achievable only under an ideal Q = .707 alignment which may require unusually large and sometimes undesireable enclosure volumes.

Order Acoustic Suspension Best Applications:
Best suited where a completely uncompromised sound quality is desired. Best for classical music and most rock and pop type music. Most widely used in car stereo systems where cabin gain can make up for its lack of low end <30Hz bass. Where size is an issue. Sealed boxes can be half the size of vented boxes yet can be made even smaller if a higher Q is allowed. May also be use for small to moderately sized Home Theaters. Usually is the easiest box to pass SAF (spouse acceptance factor). You should also go with sealed when the driver's T/S parameters dictate that the driver should be housed in a sealed enclosure due to a high Qts (above 0.4) or an EPB of 50 or lower - though this just a guideline and not a rule. Original article sourse is danmarx.org.

Comments

Popular posts from this blog

One Chip AM/FM Radio with Audio Power Amplifier

Description: The integrated circuit TDA1083 includes, with exception  of the FM front end, a complete AM-/FM-radio-circuit  with audio power amplifier. An internal Z-diode  stabilizes the supply voltage at VS 13 V, which allows  with the aid of a resistor and a rectifier, the circuit to be  driven by a higher external supply voltage. Features: Large supply voltage range VS = 3 to 12 V High AM-Sensitivity Limiting threshold voltage Vi = 50 V Audio output power P0 = 0.7 W AFC-connection for VHF-tuner AM-FM switching without high frequency voltages Applications: AM-/FM- and audio-amplifier Circuit Diagram: Circuit diagram for One Chip AM/FM Radio with Audio Power Amplifier Datasheet for TDA1083:   Download

2 x 15 W stereo Bridge Tied Load (BTL) audio amplifier

General description: The TDA8946J is a dual-channel audio power amplifier with an output power of 2 × 15 W at an 8 Ω load and a 18 V supply. The circuit contains two Bridge Tied Load (BTL) amplifiers with an all-NPN output stage and standby/mute logic. The TDA8946J comes in a 17-pin DIL-bent-SIL (DBS) power package. The TDA8946J is printed-circuit board (PCB) compatible with all other types in the TDA894x family. One PCB footprint accommodates both the mono and the stereo products. Features: Few external components Fixed gain Standby and mute mode No on/off switching plops Low standby current High supply voltage ripple rejection Outputs short-circuit protected to ground, supply and across the load Thermally protected Printed-circuit board compatible Circuit Diagram: Circuit Diagram for 2 x 15 W stereo Bridge Tied Load (BTL) audio amplifier PCB layout: PCB layout TDA8946 Datasheet for TDA8946J:   Download

200W Hybrid Audio Amplifier Circuit

200W Hybrid Audio Amplifier Circuit - c onnecting two TDA2030 thru cheap power transistors we can create a amplifier wich can deliver a higher power. With the components value from the schematic the total amplifier gain is 32 dB. The speaker can be 2 ohm instead of 4 ohm if we use the TIP transistors. TDA 2030 is produced by SGS Ates and is a complete audio amplifier. AB class of the final amplifier cand deliver up to 14W on 4 ohm at a +-14V power supply. With a proper designed power supply this audio amplifier can output 200W. Active components: IC1, Ic2 TDA 2030 T1, T3 = BD 250, TIP 36 T2,T4 = BD 249, TIP 35 D1 … D4 = 1N4001 200W Hybrid Audio Amplifier Circuit