2/20/2014

Small transistor amplifier Ideals

Currently, ICs has been used in many audio amplifiers,especially small circuit. It is convenient to use transistors.But when you need to use transistors, it has several advantages, such as saving you can take old equipment come to made small circuits easier than the IC. Which may be difficult to find. Take a look at these circuits. Maybe you get the idea of it.

Low impedance mini amplifier





This circuit can apply to signal sound source that has low impedance , such as from 4-16 ohm size loudspeakers or telephone earphone that use to replace , Micro phone. If use a loudspeaker replaces the rapidity will enough in sound checking that has been born from walking. The output this can feed reach input of high power amplifier the other next.


Power Amplifier OTL by AC176+AC126


Mr Somsak is my friend who like to make power amplifier so much. but he do not well electronic man. I so introduce he need make easy project before. This circuit is simple power amplifier OTL that mini watt output but is older circuit.

They uses transistors example number are AC176 , AC126 and BC109. which there has other a few components. They are used power Supply Voltage 9Volt only. I hope it will be once circuit so you like and well ideas.


Power Amplifier OTL Cassette Radio Booster by TIP41+TIP42




This is mini Power Amplifier OTL for Cassette Radio Booster. it have transistor TIP41 + circuits of TIP42 Drive speaker sound. Volt supply see in image.

Simple Amplifier by Transistor AC128



I find this in my old circuit electronics book. It is very a small power amplifier, but good quality audio class AB amplifier in hi-fi applications. The component capable of delivering 2W continuously an used the AC128 thansistor into a 8 ohm load and 5W peak. with the proper 9 volt unregulated power supply.
Original article sourse eleccircuit.com.


2/18/2014

Amplifier power supply using High Current Transformer

Circuit Description    
    Friends ever meet a problem power supply Circuit give current not enough. I has way this out give friends try apply. Follow this circuit High Current transformer parallel circuit make you have Current tall go up very. The transformer that have many the coil , we can bring to do high Current power supply circuit well. By if the all coil has Voltage be equal. It is can bring parallel can follow this circuit is coil lead that has Voltage 24V and have Current about 1A come to parallel prevent all 2 the group have current altogether each 2A groups by have voltage at 24V be the same. This circuit then can become Dual power supply at 34V positive and -34V Negative and Ground. This circuit uses to are amplifier power supply get good. Suppose will give the electric power about 50watt. For the diode use 3A 100V sizes and use. The Stancor for filter noise signal the all well. This circuit may help to give testimony have the idea in applying work other , get please sir.
Original article sourse elecfree.com

Amplifier circuit diagram

2/15/2014

100W subwoofer amplifier

General Description:
     This is the circuit diagram of a fully transistorized sub woofer amplifier that can produce an output of 100W.There are seven transistors including four in the output stage. The transistors Q1 and Q2 form the preamplifier stage. Transistors Q4 to Q7 form the output stage. Since no ICs are used the circuit is very robust and can be easily assembled on a general purpose PCB.

Circuits features:
  • The circuit can be powered from a +35V/-35V, 5A dual power supply.
  • Use a 100W, 12 inch sub woofer at the output.
  • All electrolytic capacitors must be rated 100V.
  • The transistor Q4 to Q7 must be fitted with heat sinks.
Circuit Diagram:
100W subwoofer amplifier circuit



Dynamic microphone Amplifier for earphones

I decided to make this circuit so that I could listen to faint noises. It is a simple two-stage transistor amplifier design. The circuit was designed to use the input from a dynamic microphone but I am sure that with some modifications it would be possible to use an electret microphone. The 2N3053 transistors used in the design don’t have a particularly high gain so other types could probably be used as long as they are NPN.
source: eleccircuit.com



Computer Microphone

      This circuit was submitted by Lazar Pancic from Yugoslavia. The sound card for a PC generally has a microphone input, speaker output and sometimes line inputs and outputs. The mic input is designed for dynamic microphones only in impedance range of 200 to 600 ohms. Lazar has adapted the sound card to use a common electret microphone using this circuit. He has made a composite amplifier using two transistors. The BC413B operates in common emitter to give a slight boost to the mic signal. This is followed by an emitter follower stage using the BC547C. This is necessary as the mic and circuit and battery will be some distance from the sound card, the low output impedance of the circuit and screened cable ensuring a clean signal with minimum noise pickup. original article soruse: eleccircuit.com


2/09/2014

How to make 3V from one battery AA 1.5V

How to make 3V from one battery AA 1.5V






2/08/2014

Telephone AmplifierLF351 and TBA820M


Amplifier description:

This circuit TDA820M Mini Amplifier 2W+2W. Supply Volt 12V, Easy to build and Low cost. If you want mini amplifier circuit , as a result do not be defeated certainly. The sound will a little 2W+2W just but enough with 6 sizes are inch 8ohm loudspeakers. as a result still have a voice good loud the moderately. Request friends have fun the circuit amplifies this miniature please yes.

Circuit diagram:




PCB layout:



In Mono style a few parts and very cheap!
TBA820 mini AUDIO AMPLIFIER 1.2W
Here is Circuit Mini power amplifier low watt (1.2W Only). IN circuit have IC TBA820,it old IC Audio amp.

 


Low Power Wireless Audio Power Amplifier

     Using this low-cost project one can reproduce audio from TV without disturbing others. It does not use any wire connection between TV and Loud Speaker. In place of a pair of wires, it uses invisible infra-red light to transmit audio signals from TV to Loud speakers, Without using any lens a range of up to 6 meters is possible. Range can be extended by using lenses and reflectors with IR sensors comprising transmitters and receivers.
     IR transmitter uses two-stage transistor amplifier to drive two series-connected IR LEDs. An audio output transformer (T1) is used (in reverse) to couple audio output from TV to the IR transmitter. Transistors Q1 and Q2 amplify the audio signals received from TV through the audio transformer. Low impedance output windings (lower gauge or thicker wires) are used for connection to TV side while high-impedance windings are connected to IR transmitter. This IR transmitter can be powered from a 9V mains adapter or a 9V battery. Red LED (D1) in transmitter circuit functions as a Zener diode (0.65V) as well as supply-on indicator.

Transmitter diagram:


Wireless Audio Power Amplifier Transmitter Circuit Diagram

Receiver's operation:


      IR receiver uses popular op-amp IC µA741 and audio-frequency amplifier IC LM386 along with phototransistor L14F1 (Q3) and some discrete components. The sound generated by TV set is transmitted through IR LEDs, received by phototransistor Q3 and fed to pin 2 of IC µA741 (IC1). Its gain can be varied using potmeter P2. The output of IC µA741 is fed to IC LM386 (IC2) via capacitor (C7) and potmeter P3. The sound produced is heard through the receiver’s loudspeaker. Potmeter P3 is used to control the volume of loudspeaker SPKR (8-ohm, 1W).

Receiver diagram:


Wireless Audio Power Amplifier Transmitter Circuit Diagram

Parts:


P1 = 10K
P3 = 10K
P2 = 1M

R1 = 4.7K
R2 = 22K
R3 = 100R
R4 = 10R-1W
R5 = 10K
R6 = 10K
R7 = 15K
R8 = 15K
R9 = 100K
R10 = 680R-1W
R11 = 1K
R12 = 10R-1W

C1 = 220uF-25V
C2 = 220uF-25V
C3 = 10uF-25V
C4 = 220uF-25V
C5 = 220uF-25V
C6 = 100nF-63V
C7 = 100nF-63V
C8 = 100nF-63V
C9 = 100nF-63V

D1 = Red LED
D2 = IR LEDs
D3 = IR LEDs

Q1 = BC547
Q2 = BD140
Q3 = L14F1

IC1 = uA741 Opamp
IC2 = LM386

J1 = Audio input Jack
T1 = Audio Transformer
SPKR = 1W-8ohm

2/07/2014

LM4910 Stereo Headphone Amplifier

Circuit description:    

      LM4910 belonging to the Boomer series of National Semiconductors is an integrated stereo amplifier primarily intended for stereo headphone applications. The IC can be operated from 3.3V ans its can deliver 0.35mW output power into a 32 ohm load. The LM4910 has very low distortion ( less than 1%) and the shutdown current is less than 1uA. This low shut down current makes it suitable for battery operated applications. The IC is so designed that there is no need of the output coupling capacitors, half supply by-pass capacitors and bootstrap capacitors. Other features of the IC are turn ON/OFF click elimination, externally programmable gain etc.

Circuit diagram:  

     Circuit diagram of the LM4910 stereo headphone amplifier is shown above.C1 and C2 are the input DC decoupling capacitors for the left and right input channels. R1 and R2 are the respective input resistors. R3 is the feed back resistor for left channel while R4 is the feed back resistor for the right channel. C3 is the power supply filter capacitor. The feedback resistors also sets the closed loop gain in conjunction with the corresponding input resistors.

The IC is available only in SMD packages and care must be taken while soldering. 
The circuit can be powered from anything between 2.2V to 5V DC. 
The load can be a 32 ohm headphone. 
Absolute maximum supply voltage is 6V and anything above it will destroy the IC. 
A logic low voltage at the shutdown pins shut downs the IC and a logic high voltage at the same pin activates the IC. Original aritcle sourse circuitsproject.com

Battery-powered Headphone Amplifier


Description:
    
   Some lovers of High Fidelity headphone listening prefer the use of battery powered headphone amplifiers, not only for portable units but also for home "table" applications. This design is intended to fulfil their needs and its topology is derived from the Portable Headphone Amplifier featuring an NPN/PNP compound pair emitter follower output stage. An improved output driving capability is gained by making this a push-pull Class-B arrangement. Output power can reach 100mW RMS into a 16 Ohm load at 6V supply with low standing and mean current consumption, allowing long battery duration. The single voltage gain stage allows the easy implementation of a shunt-feedback circuitry giving excellent frequency stability.

Battery-powered Headphone Amplifier Circuit diagram
     For a Stereo version of this circuit, all parts must be doubled except P1, SW1, J2 and B1.  Before setting quiescent current rotate the volume control P1 to the minimum, Trimmer R6 to maximum resistance and Trimmer R3 to about the middle of its travel.  Connect a suitable headphone set or, better, a 33 Ohm 1/2W resistor to the amplifier output.  Switch on the supply and measure the battery voltage with a Multimeter set to about 10Vdc fsd.  Connect the Multimeter across the positive end of C4 and the negative ground.  Rotate R3 in order to read on the Multimeter display exactly half of the battery voltage previously measured.  Switch off the supply, disconnect the Multimeter and reconnect it, set to measure about 10mA fsd, in series to the positive supply of the amplifier.  Switch on the supply and rotate R6 slowly until a reading of about 3mA is displayed.  Check again the voltage at the positive end of C4 and readjust R3 if necessary.  Wait about 15 minutes, watch if the current is varying and readjust if necessary.  Those lucky enough to reach an oscilloscope and a 1KHz sine wave generator, can drive the amplifier to the maximum output power and adjust R3 in order to obtain a symmetrical clipping of the sine wave displayed. 


Technical data:

Output power (1KHz sinewave):
16 Ohm: 100mW RMS
32 Ohm: 60mW RMS
64 Ohm: 35mW RMS
100 Ohm: 22.5mW RMS
300 Ohm: 8.5mW RMS

Sensitivity: 160mV input for 1V RMS output into 32 Ohm load (31mW)
200mV input for 1.27V RMS output into 32 Ohm load (50mW)
Frequency response @ 1V RMS:
flat from 45Hz to 20KHz, -1dB @ 35Hz, -2dB @ 24Hz
Total harmonic distortion into 16 Ohm load @ 1KHz:
1V RMS (62mW) 0.015% 1.27V RMS (onset of clipping, 100mW) 0.04%
Total harmonic distortion into 16 Ohm load @ 10KHz:
1V RMS (62mW) 0.05% 1.27V RMS (onset of clipping, 100mW) 0.1%
Unconditionally stable on capacitive loads

Class-A Headphone Amplifier

     This circuit is derived from the Portable Headphone Amplifier featuring an NPN/PNP compound pair emitter follower output stage. An improved output driving capability is gained by making this a push-pull Class-A arrangement. Output power can reach 427mW RMS into a 32 Ohm load at a fixed standing current of 100mA. The single voltage gain stage allows the easy implementation of a shunt-feedback circuitry giving excellent frequency stability.

     The above mentioned shunt-feedback configuration also allows the easy addition of frequency dependent networks in order to obtain an useful, unobtrusive, switchable Tilt control (optional). When SW1 is set in the first position a gentle, shelving bass lift and treble cut is obtained. The central position of SW1 allows a flat frequency response, whereas the third position of this switch enables a shelving treble lift and bass cut.
     Before setting quiescent current rotate the volume control P1 to the minimum, Trimmer R6 to zero resistance and Trimmer R3 to about the middle of its travel. 
Connect a suitable headphone set or, better, a 33 Ohm 1/2W resistor to the amplifier output. 
Connect a Multimeter, set to measure about 10Vdc fsd, across the positive end of C5 and the negative ground.  Switch on the supply and rotate R3 in order to read about 7.7-7.8V on the Multimeter display. 
Switch off the supply, disconnect the Multimeter and reconnect it, set to measure at least 200mA fsd, in series to the positive supply of the amplifier.  Switch on the supply and rotate R6 slowly until a reading of about 100mA is displayed.  Check again the voltage at the positive end of C5 and readjust R3 if necessary.  Wait about 15 minutes, watch if the current is varying and readjust if necessary.
P1          : 22K  Dual gang Log Potentiometer 
R1          : 15K 
R2          : 220K
R3          : 100K
R4          : 33K 
R5          : 68K 
R6          : 50K 
R7          : 10K 
R8,R9       : 47K 
R10,R11     : 2R2 
R12         : 4K7
R13         : 4R7
R14         : 1K2
R15,R18     : 330K
R16         : 680K
R17,R19     : 220K
R20,R21     : 22K
C1,C2,C3,C4 : 10µF/25V 
C5,C7       : 220µF/25V
C6,C11      : 100nF
C8          : 2200µF/25V
C9,C12      : 1nF
C10         : 470pF
C13         : 15nF
D1          : LED
D2,D3       : 1N4002 
Q1,Q2       : BC550C 
Q3          : BC560C  
Q4          : BD136   
Q5          : BD135   
IC1         : 7815
T1          : 15CT/5VA Mains transformer
SW1         : 4 poles 3 ways rotary Switch 
SW2         : SPST slide or toggle Switch
 

Mobile Car Stereo Player TDA1554

     Using a mobile phone while driving is dangerous. It is also against the law. However, you can use your mobile phone as a powerful music player with the help of a stereo power amplifier. This does away with the need of a sophisticated in-dash car music system. Most mobile phones have a music player that offers a number of features including preset/manual sound equalisers. They have standard 3.5mm stereo sockets that allow music to be played through standard stereo headphones/sound amplifiers. Nokia 2700 classic is an example.


Mobile Car Stereo Player Circuit Diagram

     A car audio amplifier with 3.5mm socket can be designed and simply connected to the mobile phone output via a shielded cable with suitable connectors/jacks (readymade 3.5mm male-to-male connector cable is a good alternative). Fig. 1 shows the circuit of car stereo player. It is built around popular single-chip audio power amplifier TDA1554Q (IC1). The TDA1554Q is an integrated class-B power amplifier in a 17-lead single-in-line (SIL) plastic power package.

     IC TDA1554Q contains four 11W identical amplifiers with differential input stages (two inverting and two non-inverting) and can be used for single-ended or bridge applications. The gain of each amplifier is fixed at 20 dB. Here it is configured as two 22W stereo bridge amplifiers. The amplifier is powered from the 12V car battery through RCA socket J2. Diode D1 protects against wrong-polarity connection. LED1 indicates the power status.
Stereo Jack :



(a) 3.5mm stereo socket and (b) 3.5mm Stereo Jack

     Connect stereo sound signal from the 3.5mm headset socket of the mobile phone to audio input socket J1. When you play the music from your mobile, IC1 amplifies the input. The output of IC1 is fed to speakers LS1 and LS2 fitted at a suitable place in your car. Electrolytic capacitor C5 connected between pin 4 of IC1 and GND improves the supply-voltage ripple rejection. Components R2 and C4 connected at mute/standby pin (pin 14) of IC1 eliminate the switch on/off plop. The circuit is quite compact. A good-quality heat-sink assembly is crucial for IC1. Fig. 2 shows the stereo socket and stereo jack.

Proposed enclosure


     Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. Small dimensions of the power amplifier make it suitable for being enclosed in a plastic (ABS) case with vent holes. Signal input socket, speaker output terminals, on/off switch, indicator, fuse holder and power supply socket are best located on the front panel of the enclosure as shown in Fig. 3.
Author : T.K. Hareendran - Copyright : EFY

Stereo Amplifier Circuit Diagram with TDA7052

BTL Stereo Amplifier Circuit Diagram with TDA7052

2/02/2014

Amplifier Circuit 2W

Amplifier description:

     This amplifier was designed to be self-contained in a small loudspeaker box. It can be feed by Walkman, Mini-Disc, iPod and CD players, computers and similar devices fitted with line or headphone output. Of course, in most cases you will have to make two boxes to obtain stereo. The circuit was deliberately designed using no ICs and in a rather old-fashioned manner in order to obtain good harmonic distortion behavior and to avoid hard to find components. The amplifier(s) can be conveniently supplied by a 12V wall plug-in adapter.Closing SW1 a bass-boost is provided but, at the same time, volume control must be increased to compensate for power loss at higher frequencies. In use, R9 should be carefully adjusted to provide minimal audible signal cross-over distortion consistent with minimal measured quiescent current consumption; a good compromise is to set the quiescent current at about 10-15 mA. To measure this current, wire a DC current meter temporarily in series with the collector of Q3.

Amplifier circuit diagram:


Amplifier circuit partlist:

P1----------10K
R1----------33K
R2----------33K
R3----------33R
R4----------15K
R5----------1K
R6----------1K
R7----------680R
R8----------120R-1/2W
R9----------100R-1/2W Trimmer Cermet
C1 ----------10µF-63V
C2 ----------10µF-63V
C3-----------100µF-25V
C4-----------470µF-25V
C5-----------47pF-63V
C7-----------470µF-25V
C6-----------220nF-63V
C8-----------1000µF-25V
D1-----------1N4148
Q1-----------BC560C
Q2-----------BC337
Q3-----------TIP31A
Q4-----------TIP32A
SW1---------SPST switch
SPKR--------3-5 Watt Loudspeaker


Mini Portable Guitar Amplifier

Guitar Circuit description:

     This small amplifier was intended to be used in conjunction with an electric guitar to do some low power monitoring, mainly for practice, either via an incorporated small loudspeaker or headphones. The complete circuit, loudspeaker, batteries, input and output jacks can be encased in a small box having the dimensions of a packet of cigarettes, or it could be fitted also into a real packet of cigarettes like some ready-made units available on the market. This design can be used in three different ways: Loudspeaker amplifier: when powered by a 9V alkaline battery it can deliver about 1.5W peak output power to the incorporated loudspeaker.  Headphone amplifier or low power loudspeaker amplifier: when powered by a 3V battery (2x1.5V cells) it can drive any headphone set type at a satisfactory output power level or deliver to the incorporated loudspeaker about 60mW of output power. This configuration is useful for saving battery costs. Fuzz-box: when powered by a 3V battery (2x1.5V cells) and having its output connected to a guitar amplifier input the circuit will behave as a good Fuzz-box, showing an output square wave with marked rounded corners, typical of valve-circuits output when driven into saturation. 

Guitar amplifier circuit diagram:


Guitar amplifier partlist:
  • R1__________22K 1/4W Resistor
  • C1__________10µF 25V Electrolytic Capacitor
  • C2__________100nF 63V Polyester or Ceramic Capacitor
  • C3__________220µF 25V Electrolytic Capacitor
  • IC1_________TDA7052 Audio power amplifier IC
  • J1,J2_______6.3mm Stereo Jack sockets (switched)
  • SPKR_______8 Ohm Loudspeaker (See Notes)
  • B1_________9V PP3 Battery or 3V Battery (2 x 1.5V AA, AAA Cells in series etc.)
  • Clip for PP3 Battery or socket for 2 x 1.5V AA or AAA Cells

Technical data:

  • Max output power: 1.5W @ 9V supply - 8 Ohm load; 60mW @ 3V supply - 8 Ohm load
  • Frequency response: Flat from 20Hz to 20kHz
  • Total harmonic distortion @ 100mW output: 0.2%
  • Max input voltage @ 3V supply: 8mV RMS
  • Minimum input voltage for Fuzz-box operation: 18mV RMS @ 3V supply
  • Current consumption @ 400mW and 9V supply: 200mA
  • Current consumption @ 250mW and 9V supply: 150mA
  • Current consumption @ 60mW and 3V supply: 80mA
  • Quiescent current consumption: 6mA @ 9V, 4mA @ 3V supply
  • Fuzz-box current consumption: 3mA @ 3V supply

Crowbar Speaker Protection

Description
Crowbar circuits are so-called because their operation is the equivalent of dropping a crowbar (large steel digging implement) across the terminals. It is only ever used as a last resort, and can only be used where the attached circuit is properly fused or incorporates other protective measures.

A crowbar circuit is potentially destructive - if the circuitry only has a minor fault, it will be a major fault by the time a crowbar has done its job. It is not uncommon for the crowbar circuit to be destroyed as well - the purpose is to protect the device(s) attached to the circuit - in this case, a loudspeaker.



There's really nothing to it. A resistor / capacitor circuit isolates the trigger circuit from normal AC signals. Should there be enough DC to activate the DIAC trigger, the cap is discharged into the gate of the TRIAC, which instantly turns on ... hard. A TRIAC has two basic states, on and off. The in-between state exists, but is so fast that it can be ignored for all intents and purposes.

The BR100 DIAC (or the equivalent DB3 from ST Microelectronics) is rated for a breakdown voltage of between 28 and 36V - these are not precision devices. Needless to say, using the circuit with supply voltages less than around 40V is not recommended, as you will have a false sense of security. The supply voltage must be higher than the breakdown voltage of the DIAC, or it cannot conduct. Zeners cannot be used as a substitute for lower voltages - a DIAC has a negative impedance characteristic, so when it conducts, it will dump almost the full charge in C1 into the gate of the TRIAC. This is essential to make sure the TRIAC is switched into conduction.

The TRIAC is a common type, and may be substituted if you know the specifications. It's rated at 12A, but the peak current (non-repetitive) is 95A, and it only needs to sustain that until the fuse (or an output transistor) blows. A heatsink is preferred, but there is a good chance that the TRIAC will blow up if it has to protect your speakers, so it may not matter too much. The 0.47 ohm resistor is simply to ensure that the short circuit isn't absolute. This will limit the current a little, and increases the chance that the TRIAC will survive (albeit marginally). Feel free to use a BT139 if it makes you feel better - these are rated at 16A continuous, and 140A non-repetitive peak current.

The peak short circuit current will typically be about 90A for a ±60V supply, allowing ~0.2 ohms for wiring resistance and the intrinsic internal resistance of the TRIAC, plus the equivalent series resistance of the filter capacitors. That's a seriously high current, and it will do an injury to anything that's part of the discharge path. Such high currents are not advised for filter caps either, but being non-repetitive they will almost certainly survive.

Construction & Use

Apart from the obvious requirement that you don't make any mistakes, construction is not critical. Wiring needs to be of a reasonable gauge, and should be tied down with cable ties or similar. C1 must be polyester. While a non-polarised electrolytic would seem to be acceptable, the circuit will operate if the capacitor should dry out over the years. This means it will lose capacitance, and at some point, the crowbar may operate on normal programme material. This would not be good, as it will blow up your amplifier!

Make sure that all connections are secure and well soldered. Remember that this is the last chance for your speakers, so it needs to be able to remain inactive for years and years - hopefully it will never happen. The circuit doesn't have to be mounted in the amplifier chassis - it can be installed in your speaker cabinet. Nothing gets hot unless it operates, at which point no-one really cares - it just has to save the speakers from destruction once to have been worthwhile.

Remember that the crowbar circuit absolutely must never be allowed to operate with any normal signal. A perfectly good amplifier that triggers the circuit because of a high-level bass signal (for example) will very likely be seriously damaged if the crowbar activates. To verify that no signal can trigger it, you may want to (temporarily) use a small lamp in place of R2, and drive the amp to maximum power with bass-heavy material.

A speaker does not need to be connected. If the lamp flashes, your amp would have been damaged. If this occurs, you may want to increase the value of C1. Note that bipolar electrolytics should never be used for C1, because they can dry out and lose capacitance as they age. This could cause the circuit to false-trigger.
Origianl article sourse learningelectronics.net

70 Watt Guitar Amplifier

Guitar Amplifier description:



Guitar Amplifier parts list:

R1______________18K 1/4W Resistor
R2_______________3K9 1/4W Resistor
R3,R6____________1K 1/4W Resistors
R4_______________2K2 1/4W Resistor
R5______________15K 1/4W Resistor
R7______________22K 1/4W Resistor
R8_____________330R 1/4W Resistor
R9,R10__________10R 1/4W Resistors
R11,R12_________47R 1/4W Resistors
R13_____________10R 1W Resistor
C1_______________1µF 63V Polyester Capacitor
C2_____________470pF 63V Polystyrene or Ceramic Capacitor
C3______________47µF 25V Electrolytic Capacitor
C4______________15pF 63V Polystyrene or Ceramic Capacitor
C5_____________220nF 100V Polyester Capacitor
C6_____________100nF 63V Polyester Capacitor
 D1,D2,D3,D4___1N4148 75V 150mA Diodes 
Q1,Q2________BC560C 45V 100mA Low noise High gain PNP Transistors
Q3,Q4________BC556 65V 100mA PNP Transistors
Q5___________BC546 65V 100mA NPN Transistor
Q6___________BD139 80V 1.5A NPN Transistor
Q7___________BD140 80V 1.5A PNP Transistor
Q8__________MJ2955 60V 15A PNP Transistor

2/01/2014

Mosfet Audio Amplifier 25W

General description:

Can be directly connected to CD players, tuners and tape recorders. Simply add a 10K Log potentiometer (dual gang for stereo) and a switch to cope with the various sources you need. Q6 & Q7 must have a small U-shaped heatsink. Q8 & Q9 must be mounted on heatsink. Adjust R11 to set quiescent current at 100mA (best measured with an Avo-meter in series with Q8 Drain) with no input signal. A correct grounding is very important to eliminate hum and ground loops. Connect in the same point the ground sides of R1, R4, R9, C3 to C8. Connect C11 at output ground. Then connect separately the input and output grounds at power supply ground.

Amplifier circuit diagram:

25 Watt Amplifier

Part list:

R1,R4 = 47K 1/4W Resistors
R2 = 4K7 1/4W Resistors
R3 = 1K5 1/4W Resistors
R5 = 390R 1/4W Resistors
R6 = 470R 1/4W Resistors
R7 = 33K 1/4W Resistors
R8 = 150K 1/4W Resistors
R9 = 15K 1/4W Resistors
R10 = 27R 1/4W Resistors
R11 = 500R 1/2W Trimmer Cermet
R12,R13,R16 = 10R 1/4W Resistors
R14,R15 = 220R 1/4W Resistors
R17 = 8R2 2W Resistor
R18 = R22 4W Resistor (wirewound)
C1 = 470nF 63V Polyester Capacitor
C2 = 330pF 63V Polystyrene Capacitor
C3,C5 = 470µF 63V Electrolytic Capacitors
C4,C6,C8,C11 = 100nF 63V Polyester Capacitors
C7 = 100µF 25V Electrolytic Capacitor
C9 = 10pF 63V Polystyrene Capacitor
C10 = 1µF 63V Polyester Capacitor
Q1-Q5 = BC560C 45V100mA Low noise High gain PNP Transistors
Q6 = BD140 80V 1.5A PNP Transistor
Q7 = BD139 80V 1.5A NPN Transistor
Q8 = IRF532 100V 12A N-Channel Hexfet Transistor
Q9 = IRF9532 100V 10A P-Channel Hexfet Transistor

Power supply circuit diagram:




Part list:

R1 = 3K3 1/2W Resistor
C1 = 10nF 1000V Polyester Capacitor
C2,C3 = 4700µF 50V Electrolytic Capacitors
C4,C5 = 100nF 63V Polyester Capacitors
D1 200V 8A Diode bridge
D2 5mm. Red LED
F1,F2 3.15A Fuses with sockets
T1 220V Primary, 25 + 25V Secondary 120VA Mains transformer
PL1 Male Mains plug
SW1 SPST Mains switch

Low pass filter - Subwoofer

General description

     The acoustic spectrum is extended by very low frequencies 20Iz and reaches as the 20000Iz in high frequencies. In the low frequencies is degraded the sense of direction. This reason us leads to the utilization speaker for the attribution of very low frequencies. The manufacture that to you we propose distinguishes these frequencies, in order to him we lead to the corresponding amplifier. The acoustic filters are met in various points in the sound systems. The knownest application they are the filters baxandal for regulating tone low and high frequencies and filters crossover where the acoustic region is separated in subareas, in order to it leads the corresponding loudspeakers. The application that to you we propose is a simple filter of region that limits the acoustic region (20-20000Hz) in the region 20-100Hz.


     With the manufacture that to you we propose you can make a active filter in order to you lead a loudspeaker of very low frequencies. With this you will place one bigger speaker between the HIFI speakers of you. In order to you have a complete picture of sound you will need also the corresponding amplifier. In the entry of circuit you will connect the two exits of preamplifier or the exit of line of some preamplifier. The circuit of manufacture allocates a exit in order to is led means of circuit of force subwoofer. If for some reason you do not have space in order to you place the third speaker in space of hearing, then you can select smaller speaker. The output will depend from the type of music that you hear. If in deed you have space, then after you make a filter and remain thanked, you can him recommend in your friends or still make other same for your friends.

Circuit diagram:


     In the form it appears the theoretical circuit of filter. In first glance we see three different circuits that are mainly manufactured round two operational amplifiers. This circuits constitute mixed, amplifier with variable aid and a variable filter. The manufacture end needs a circuit of catering with operational tendency of catering equal with ±12. the operational amplifiers that constitute the active elements for this circuits of are double operational type as the TL082 and NE5532. The operational these amplifiers belong in a family provided with transistor of effect of field IFET in their entries. Each member of family allocates in their circuit bipolar transistor and effect of field. This circuits can function in his high tendency, because that they use transistor of high tendency. Also they have high honor of rhythm of elevation (slew rate), low current of polarization for the entries and are influenced little by the temperature. The operational these amplifiers have breadth of area unity gain bandwidth 3MHz. A other important element for their choice is the big reject of noise, when this exists in the line of catering.
     The price of reject is bigger than 80dB, their consumption is small, from 11 until 3 mA. They are internally sold in nutshell with eight pins and allocate two operational amplifiers, In the same line in nutshell 14 pins they incorporate four operational, In the trade they are sold with code TL074, TL084 and TL064, In nutshell with eight pins they are sold operational amplifiers TL061 TL071 kajTL081. In the manufacture we used the TL082 that has two operational. First operational from the TL082 it works as amplifier and mixed for the two channels, In his negative entry he exists one small mixed with two resistances. A potentiometer in this rung determines the aid of circuit. In the point this left winger and the right channel of preamplifier they are added means of two resistances. En continuity the operational strengthens signal with aid made dependent from the price that has the potentiometer.
     The place of runner is proportional with the aid of circuit. The second operational amplifier is the filter of manufacture. The filter of is acoustic frequency of second class and he is made with the materials that are round the operational amplifier. The filter of is low passage with variable frequency of cutting off. This frequency can be altered and take prices from very low frequency the 30Hz or still exceed 150Hz. The frequency of cutting off of filter depends from the prices that have the elements of circuit. Altering the values of elements we can have frequency of cutting off 150Iz, 130Iz, J00Iz, 7Ïz, 6Íz even 3Íz, this prices they can be achieved with the simple rotation of double potentiometer. The circuit of filter has been made around one operational' that it has completed TL082 that is double operational amplifier. In the exit of filter we will link the plug of expense where is connected the amplifier. In the exit of circuit is presented, the limited as for the breadth of frequencies, signal that we apply in the entry of circuit.

Part list:


R1 = 39 Kohm 
R2 = 39 Kohm
R3 = 47 Kohm 
R4 = 10 Ohm
R5 = 22 Kohm 
R6 = 4,7 Kohm
R7 = 22 Kohm 
R8 = 4,7 Kohm
R9 = 10 Ohm 
R10 = 220 Ohm
C1 = 39 pF 
C2 = 0.1 uF
C3 = 0.1 uF 
C4 = 0.2 uF
C5 = 0.4 uF 
C6 = 0.1 uF
C7 = 0.1 uF 
IC1 = TL064

PCB and layout:

 

  

Detail of subwoofer

Variations in the anatomy of a subwoofer dramatically changes their performance characteristics. An increase in voicecoil size coupled with a stronger cone material yields a higher power handling and increased output. By combining quality materials with Rockford’s proprietary acoustic technologies, our subwoofer lineup is sure to meet your system’s demands.



Basket - Also referred to as the frame or chassis, this is the skeletal system of the speaker. Here to keep everything in its place.

Spider - Second part of the speakers suspension, connects the cone and voice coil to the basket and controls the travel of the cone assembly.

Voice Coil - The brains of the operation, directing the force from the magnet to push or pull based on the applied electrical signal.

Surround - First part in the speakers suspension, attached to the cone to maintain the centering of the voice coil in the magnetic gap.

Cone - A.K.A the diaphragm, this is the voice of the speaker. Shape and material dramatically change tonality.

Magnet - The heart of speaker, creating the force to push and pull cone assembly. Size, material, and design may differ, depending on performance goals.
Original sourse article rockfordfosgate.com

MAX98500 Amplifier circuit 1x2.2W

MAX98500 general description:


The MAX98500 is a high-efficiency Class D audio amplifier that features an integrated boost converter, to deliver a constant output power over a wide range of battery supply voltages. The boost converter operates at 2MHz, requiring only a small (2.2µH) external inductor and capacitor. The automatic level control has a battery tracking function that reduces the output swing as the supply voltage drops, preventing collapse of battery voltage. The amplifier has differential inputs and an internal fully differential design. The MAX98500 also features three gain settings (6dB, 15.5dB, and 20dB) that are selectable with a logic input. The MAX98500 is available in a small, 0.5mm pitch 16-bump WLP package (2.1mm x 2.1mm). It is specified over the extended -40°C to +85°C temperature range.

MAX98500 applications:


Active Speaker Accessories
Cell Phones
GPS Devices
Mobile Internet Devices
Smartphones
Data Sheet

MAX98500 features:


Boosted Class D Output
Integrated Automatic Level Control
Output Power
2.2W into 8Ω, 10% THD+N
1.7W into 8Ω, 1% THD+N
Wide 2.5V to 5.5V Supply Voltage Range
Undervoltage Lockout Protection
High Total Efficiency of 87%
High Step-Up Switching Frequency (2MHz)
Active Emission Limiting for Low EMI 

MAX98500 circuit diagram:

MAX98500 circuit diagram

LA3600 Equalizer 5 band

Applications:

  • Portable component stereos, tape-recorders, radio-cassette recorders, car stereos.

Features:

  • On-chip one operational amplifier.
  • 5-band graphic equalizer for one channel can be formed easily by externally connecting capacitors and variable resistors which fix fo (resonance frequency).
  • Series connection of two LA3600’s makes multiband (6 to 10 bands) available.
  • Highly stable to capacitive load.

LA3600 Circuit diagram:


LA3600 Circuit diagram
 LA3600 pcb:
LA3600 pcb

Search This Blog

Powered by Blogger.

200W Audio Amplifier Circuit

Circuit description: Connecting two TDA2030 thru cheap power transistors we can create a amplifier wich can deliver a higher power. Wi...

Labels

Amplifier Circuits (107) 4 Ω (85) TDA Amplifiers (66) Amplifier (50) 8 Ω (46) Circuit (37) subwoofer (31) Layout (26) audio (26) Subwoofer circuit (25) 2 Ω (23) Class D (23) Subwoofer Amplifier (23) Description (22) PCB (21) Subwoofer Diagram (21) Audio Amplifier (20) Stereo Amplifier (18) 20W (17) Auto Subwoofer (17) Stereo Amp (16) car subwoofer (16) BTL amplifier (14) ClassAB (14) Software (14) Electronic software (13) Sound System (13) 2x10W (12) 4-channel (12) 60W (12) BTL audio amplifier (12) Car Audio (12) Operational Amplifier (12) Power Amplifier (12) 2x12W (10) Audio Power Amplifier (10) Car Stereo (10) 2x25W (9) 5W (9) Car Amplifier (9) Circuit Diagram (9) Dual channel (9) Filter Circuits (9) Speakers (9) 2x40W (8) 2x6W (8) 3W (8) 4x50W (8) Audio Power Amp (8) Class B (8) Guitar Amplifier (8) 10W (7) 2x22W (7) 4x35W (7) 50W (7) Car Stereos (7) Subwoofer car (7) car radio amplifier (7) mono amplifier (7) 100W (6) 12W (6) 1W (6) 2-channel (6) 22W (6) 2w (6) 2x20W (6) 2x30W (6) Features (6) Guitar circuits (6) Microphone (6) Mixer (6) Stereo Preamp (6) general description (6) quad bridge (6) tone control (6) 100W Audio Amplifier (5) 18W (5) 40W (5) 4W (5) 4x45W (5) 6 Ω (5) 70W (5) Amps (5) Audio Processor (5) Car radio (5) Diagram (5) MOSFET (5) Preamplifier (5) applications (5) hi-fi audio power amplifier (5) newamps (5) 15W (4) 2-channel Amplifier (4) 200W (4) 2x100W (4) 2x15W (4) 6W (4) 8W (4) Amplifier High-Performance (4) BTL stereo (4) Bridge Amplifer (4) Class T (4) Datasheet (4) Dual Preamplifier (4) Equalizer circuit (4) Quad power amplifier (4) STK Amplifier (4) Sound Amplifier Circuit (4) Volume Control (4) car radio power amplifier (4) stereo BTL (4) 100W Subwoofer (3) 24W (3) 2x200W (3) 2x50W (3) 3 Ω (3) 3-channel (3) 300W (3) 35W (3) 4-ch amplifier circuit diagram (3) 400W (3) 4x11W (3) 4x12W (3) 4x22W (3) 4x40W (3) 500W (3) 80W (3) AM/FM Tuner (3) Amp (3) Amplifer (3) Arduino (3) Audio Circuit Diagram (3) Audio Speakers (3) Audio signal processing (3) Car Speakers (3) DMOS (3) Digital Audio Amplifier (3) Dual Audio (3) Dual BTL (3) Graphic Equalizer (3) Guitar (3) Guitar Effect Circuit (3) Hi-Fi audio (3) LED (3) Low noise (3) Power Supply (3) STK412-000 (3) Stereo balance meter (3) Subwoofer Design (3) Surround (3) TDA (3) TDA1566 (3) TDA2008 (3) TDA8586 (3) Tips To Save Energy (3) digital controlled (3) guitars (3) single channel (3) stereo headphone (3) 100+100W (2) 1000W (2) 1000W Amplifier (2) 100W Subwoofer Amplifier Circuit (2) 14W (2) 180W + 180W (2) 1ch BTL Power Amplifier (2) 2 x 210 Watt (2) 200W amplifier (2) 25W (2) 28w (2) 2x110W (2) 2x11W (2) 2x120W (2) 2x150W (2) 2x1W (2) 2x210W (2) 2x24W (2) 2x300W (2) 2x35W (2) 2x46W (2) 2x5W (2) 2x7W (2) 2x80W (2) 3 channel amplifier (2) 30W (2) 30w Amplifier (2) 32 Ω (2) 32W (2) 45W (2) 4x13W (2) 4x25W (2) 4x30 (2) 4x6W (2) 4x70W (2) 5 Band Graphic Equalizer Circuit (2) 92W (2) AM receiver (2) AM/FM Radio (2) AN12941A (2) AN12972A (2) AN7110 (2) AN7163 (2) AN7177 (2) AN7531SA (2) ARM (2) ARM Microcontroller (2) Aliexpress circuits (2) Amplifier Transistors (2) Audio Filter Circuits (2) Audio Mixer (2) Audio Mixer Circuit (2) Audio Preamplifier (2) BCDMOS technology (2) BTL power amplifier (2) CMOS (2) Car Subwoofers (2) Ceiling Speakers (2) Class H (2) Equalizer (2) FM Stereo (2) FM Transmitter (2) Guitar Amps (2) Guitar circuit (2) HA13116 (2) Hi-Fi systems (2) IRF530 (2) IRF9530 (2) LA4460N (2) LM1875 (2) LM380 (2) LM3886 (2) LPC2124 (2) MOSFET Audio Amplifier (2) Microcontroller (2) Music System (2) NE5532 (2) NE555 (2) Peak Indicator (2) Power Amp (2) Recording (2) STA501 (2) STEREO (2) STK400-530 (2) Sound (2) Sound Decoder (2) Speaker (2) Stereo Decoder (2) Stereo Headphone Amplifier (2) TA8210AH Amplifier (2) TDA1015 (2) TDA1037 (2) TDA1083 (2) TDA1514A (2) TDA1517 (2) TDA1562Q (2) TDA1904 (2) TDA1905 (2) TDA1910 (2) TDA2003 (2) TDA2004 (2) TDA2051 (2) TDA2613 (2) TDA7056 (2) TDA7264 (2) TDA7269 (2) TDA7294 (2) TDA7298 (2) TDA7299 (2) TDA7334 (2) TDA7360 (2) TDA7454 (2) TDA7481 (2) TDA7490 (2) TDA7511 (2) TDA7850 (2) TDA8562Q (2) TDA8922 (2) TDA8924 (2) TDA8929T (2) TDA8931 (2) Two-channel Amplifier (2) best car speakers (2) demodulators FM (2) high performance hi-fi amplifier (2) partlist (2) quad bridge car radio amplifier (2) speaker protection (2) stereo car radio power amplifier (2) stereo tv (2) subwoofer circuit diagram (2) subwoofer for car (2) subwoofer preamp circuit diagram (2) subwoofers for cars (2) /Playback Pre-/Power Amplifier (1) 0.5W (1) 1 Ω (1) 1-channel (1) 1.2W (1) 1.6W (1) 10+10+10W (1) 1000 watts power amplifier schematic diagram (1) 1000W MOSFET (1) 100W Guitar Amplifier (1) 100W MOSFET (1) 10W circuit (1) 10W+10W (1) 1100W (1) 12 W car radio power amplifier (1) 1200W (1) 120W (1) 13.5W (1) 130W (1) 140 watt subwoofer (1) 140W (1) 14W+2x7.5W (1) 150 Amplifier (1) 150W (1) 150W+150W+150W (1) 170W amplifier (1) 17W (1) 18W Class-B Audio Amplifier (1) 19V (1) 1Kw Amplifier (1) 2 × 13 W (1) 2.1 channel (1) 2.7W (1) 200 Watts Amplifier Circuit (1) 200 watt mosfet amplifier circuit (1) 200W Audio Amplifier Circuit Diagram (1) 200W amplifier circuit (1) 200w stereo digital audio power amplifier (1) 20W+20W (1) 20W+20W+20W (1) 21W (1) 240W (1) 26 W BTL (1) 26V (1) 27W (1) 2SK1066 (1) 2x1.4W (1) 2x1.7W (1) 2x1100W (1) 2x13W+26W (1) 2x14W (1) 2x170W (1) 2x175W (1) 2x18W (1) 2x2.2W (1) 2x23W (1) 2x250W (1) 2x2W (1) 2x32W (1) 2x45W (1) 2x5.5W (1) 2x500W (1) 2x60W (1) 2x60mW (1) 2x7.3W (1) 2x70W (1) 2x75mW (1) 3 band equalizer guitar (1) 3-channel mixer (1) 30 Watt x 5 (1) 300W Subwoofer (1) 300W Subwoofer Power Amplifier (1) 315W (1) 32W Stereo (1) 350 watt mono amplifier (1) 35mW (1) 3x10W (1) 3x150W (1) 3x20W (1) 3x90Watt (1) 4 channel amplifier (1) 4 channel audio amplifier circuit diagram (1) 4 channel car amplifier circuit (1) 4 × 13 W (1) 4-Channel Outputs Volume Tone Balance (1) 4.4W (1) 4.5W (1) 400W IRFP448 (1) 40W Amplifier (1) 430mW (1) 43W (1) 4461N (1) 44W (1) 47W (1) 4x100W (1) 4x15W (1) 4x20W (1) 4x30W (1) 4x33W (1) 4x34W (1) 4x37W (1) 4x38W (1) 4x42W (1) 4x43W (1) 4x44W (1) 4x46W (1) 4x47W (1) 4x6.5W (1) 4x60W (1) 4x75W (1) 4x7W (1) 4Ω (1) 5 channel amplifer (1) 5-band stereo (1) 5.1 subwoofer circuit diagram (1) 5.4W (1) 5.5W (1) 5.8W (1) 55 dB (1) 56W (1) 5W+5W (1) 60 Watt (1) 60W Hi-Fi Power Amplifier Circuit (1) 60W+60W (1) 6x30W (1) 7 segment display Arduino (1) 7.5W (1) 70 Watt MOSFET Audio Power Amplifier (1) 70V (1) 75W (1) 7W (1) 80W Subwoofer (1) AA (1) AAA (1) AC and DC (1) AD1991 (1) AD199x (1) ADC (1) ADDR (1) ALC circuit (1) AM Radio Circuits (1) AM Tuner (1) AM tuner RF amplifier (1) AM-demodulator (1) AM/FM (1) AN17000A (1) AN17810 (1) AN17813A (1) AN17831A (1) AN17850A (1) AN4250 (1) AN4558 (1) AN5275 (1) AN5277 (1) AN5279 (1) AN7060 (1) AN7086S (1) AN7112 (1) AN7116 (1) AN7124 (1) AN7125 (1) AN7131 (1) AN7134 (1) AN7147 (1) AN7148 (1) AN7158N (1) AN7161 (1) AN7164 (1) AN7170 (1) AN7176 (1) AN7176K (1) AN7190 (1) AN7190NK (1) AN7195 (1) AN7198 (1) AN7208SA (1) AN7273 (1) AN7310N (1) AN7337N (1) AN7500FHQ (1) AN7504SB (1) AN7510 (1) AN7511 (1) AN7512 (1) AN7515SH (1) AN7516SH (1) AN7551Z (1) AN7555NZ (1) AN7560 (1) AN7561Z (1) AP130 (1) AP4809 (1) APA2065 (1) Altium Designer (1) Am Radio (1) Amplifier Circuit diagram (1) Amplifier Circuit for TV (1) Amplifier Features (1) Amplifier circuit (1) Amplifiers circuits (1) Arduino Uno Rev3 schematic (1) Audio Car (1) Audio Codec (1) Audio Equalizer (1) Audio IC (1) Audio Power Circuit LM Amplifiers (1) Audio Procesor (1) Audio Systems (1) Auto Radio (1) Auto Reverse (1) BA10324A (1) BA10324AF (1) BA10324AFV (1) BA1442A (1) BA328 (1) BA3306 (1) BA3430S (1) BA3826S (1) BA3837 (1) BA3840KV (1) BA3842 (1) BA3853 (1) BA3870 (1) BA3880 (1) BA5204 (1) BA5210FS (1) BA5406 (1) BC 547B (1) BCD technology (1) BICMOS (1) BTL car audio (1) BTL/SE (1) BTSC (1) BUZ23 (1) Basic Low Power AM transmitter (1) Bass (1) Bass Amplifier (1) Bass Boost System (1) Bass Guitar (1) Battery Level Indicator (1) Bridge-Tied Load (1) Build A Subwoofer Box (1) Building subwoofer (1) CS44130 (1) Cable Set-Top Products (1) Car Subwoofer Amplifier Circuit Diagram (1) Car audio amplifier with IC TA7203P (1) Center-Channel (1) Circuit Mixer (1) Circuit Simulator (1) Class T amplifiers (1) Class-B (1) Class-D (1) Clipping Detector (1) Computer Speaker (1) DDD (1) DDX-2060 (1) DIL (1) DMOS Audio Amplifier (1) DTL (1) DVCs (1) DVD Receivers (1) Denon Subwoofers (1) Design a Subwoofer Box (1) DesignSpark PCB (1) Detector (1) Diagram mixer (1) Diference Amplifier (1) Differentiator (1) Digital Delay (1) Digital Echo (1) Digital Radio (1) Digital TV (1) DipTrace (1) Dual Audioprocessor (1) Dual Pre Amplifier (1) Dual amplifier (1) Dual operational amplifier (1) Dynamic Distortion Detector (1) EDWinXP (1) EUA5202 (1) Eagle (1) Easy to Make (1) Electric Motor (1) Electricity (1) Electronic Componets (1) Equalized-preamp (1) ExpressPCB (1) FET (1) FM demodulator (1) FM processing (1) FM radio (1) FM radio Receivers (1) FM receivers (1) FM sound (1) FM stereo decoder (1) FM tuners (1) FOUR CHANNEL (1) FreePCB (1) Guitar Amp Circuit (1) Guitar Amplifier Circuit (1) Guitar pre-amplifier (1) Guitar vocal adaptor amp (1) HA12002 (1) HA13117 (1) HA13118 (1) HA13119 (1) HA13127 (1) HA13150A (1) HA13151 (1) HA13153 (1) HA13155 (1) HA13156 (1) HA13158A (1) HA13159 (1) HA1397 (1) HDMI (1) HEXFET (1) Headphone (1) High Gain (1) High Signal-to-Noise ratio (1) How to Build a Subwoofer Box (1) How to Match a Car Subwoofer (1) I2C Bus Interface (1) IF Amplifier (1) IF-PLL (1) IF-PLL demodulator (1) IRFP260 (1) ISS filter (1) Integrator (1) Inverting (1) It begins with your commitment (1) KA22134 (1) Kicad (1) LA3160 (1) LA4440 (1) LA4445 (1) LA4446 (1) LA4500 (1) LA4558 (1) LA4625 (1) LA4628 (1) LA4725 (1) LM Series (1) LM101 (1) LM101A (1) LM12 (1) LM2002 (1) LM2005 (1) LM378 (1) LM383 (1) LM383A (1) LM386 (1) LM386N (1) LM3876 (1) LM391 (1) LM4732 (1) LM4766 (1) LM4851 (1) LM567 Infrared Transmitter Circuit (1) LM6161 (1) LM6261 (1) LM6361 (1) LM833 (1) LS404 (1) LX1720 (1) Line Level Stereo (1) Loudspeaker (1) Low Noise Amplifier (1) Low distortion (1) M65831A (1) MC1350 (1) MJE340 (1) MJE350 (1) MOSFET power amplifier (1) MOSFET quad bridge (1) Microphone System (1) Mini Portable Guitar Amplifier (1) Mitsubishi M5226P (1) Mobile Car Stereo Amplifier (1) Modulated Receiver (1) Mp3 Player (1) Mtx Audio (1) Multi-channel (1) NCP2890 (1) NE 5532 (1) NTE1285 (1) NTE1371 (1) NTE1373 (1) NTE7011 (1) NTE7059 (1) Noise Transistor (1) Offset (1) Overload (1) P-CAD (1) PA03 (1) PA03A (1) PA05 (1) PCB mixer (1) PLL Stereo (1) PLL synthesizer (1) PNP-NPN (1) PWM processor (1) Peamp circuit (1) Phase Locked Loop (PLL) (1) Phono/line adapter (1) Power (1) Power Audio (1) Power Comparator (1) Power Stage Amplifier (1) Preamp Circuit (1) Proteus (1) Pulse Generator (1) Pulse-Frequency (1) Quad Half-Bridge (1) Quad Operational Amplifier (1) RDA Demodulator (1) RDS (1) RDS Filter (1) RF (1) Radio Players (1) Remote amplifier dsp (1) SA58631 (1) SA58632 (1) SA58672 (1) SAP Decoder (1) SAVING ENERGY (1) SCART channel (1) SEPP (1) SMA428A (1) ST-BY (1) STA001 (1) STA323W (1) STA502 (1) STA5100 (1) STA515 (1) STA5150 (1) STA516B (1) STA517B (1) STA7056 (1) STA7575 (1) STK442-130 (1) STK084 (1) STK086G (1) STK400-030 (1) STK4017 (1) STK4044 (1) STK4048 (1) STK4050 (1) STK4050V (1) STK413-000 (1) STK4221 (1) STK433-330 (1) STK433-330N-E (1) STK443-090 (1) STK465 (1) Signal (1) Single Channel Amplifier (1) Six-Channel (1) Sofware (1) Sound Control (1) Sound Demodulator (1) Sound Processor (1) Spectrum Analyzer (1) Sprint-Layout (1) Stand-by options (1) Stereo 300W Audio Amplifier (1) Stereo Audio Amplifier System (1) Stereo Car Audio Amplifie (1) Stereo Demodulator (1) Stereo Digital (1) Stereo Inputs (1) Stereo Radio Circuit (1) Stereo System (1) Stereo System Ic (1) Stereo applications (1) Stereo balance tester (1) Stereo modulator (1) Stereo stk013 audio amplifier circuit (1) Subwoofer 400W (1) Subwoofer output (1) Summing (1) Surround Sound Matrix (1) TA Series (1) TA0102A (1) TA0103A (1) TA0105A (1) TA2022 (1) TA2024C (1) TA3020 (1) TA8159FN (1) TA8220H (1) TA8225H (1) TA8233H (1) TA8238K (1) TA8246AH (1) TA8251AH (1) TA8255AH (1) TA8260 (1) TA8263 (1) TA8273 (1) TA8276H (1) TA8277 (1) TAA4100 (1) TAS5122 (1) TAS5132 (1) TB2903HQ (1) TDA 1524A (1) TDA Amplifier Circuit (1) TDA1001B (1) TDA1010A (1) TDA1011 (1) TDA1013B (1) TDA1016 (1) TDA1020 (1) TDA1308 (1) TDA1400 (1) TDA1510 (1) TDA1512 (1) TDA1515 (1) TDA1516 (1) TDA1518 (1) TDA1519 (1) TDA1520A (1) TDA1521 (1) TDA1523 (1) TDA1524 (1) TDA1526 (1) TDA1552Q (1) TDA1554Q (1) TDA1555Q (1) TDA1556Q (1) TDA1557Q (1) TDA1558Q (1) TDA1560Q (1) TDA1561Q (1) TDA1563Q (1) TDA1564 (1) TDA1565 (1) TDA1572 (1) TDA1599 (1) TDA1908 (1) TDA2002 (1) TDA2005 (1) TDA2006 (1) TDA2007 (1) TDA2009A (1) TDA2020 (1) TDA2025 (1) TDA2030 (1) TDA2040 (1) TDA2050 (1) TDA2052 (1) TDA2075 (1) TDA2075A (1) TDA2320A (1) TDA2500 (1) TDA2611 (1) TDA2611A (1) TDA2614 (1) TDA2615 (1) TDA2616 (1) TDA2822 (1) TDA3803 (1) TDA7050T (1) TDA7052 (1) TDA7231A (1) TDA7245 (1) TDA7250 (1) TDA7253 (1) TDA7256 (1) TDA7261 (1) TDA7262 (1) TDA7263 (1) TDA7263M (1) TDA7266 (1) TDA7266B (1) TDA7267 (1) TDA7268 (1) TDA7269A (1) TDA7293 (1) TDA7295 (1) TDA7296 (1) TDA7296A (1) TDA7297 (1) TDA7310 (1) TDA7313 (1) TDA7317 (1) TDA7318 (1) TDA7319 (1) TDA7330B (1) TDA7332 (1) TDA7336 (1) TDA7338 (1) TDA7339 (1) TDA7348 (1) TDA7350 (1) TDA7365 (1) TDA7370 (1) TDA7374 (1) TDA7374B (1) TDA7375 (1) TDA7376B (1) TDA7377 (1) TDA7381 (1) TDA7382 (1) TDA7383 (1) TDA7384A (1) TDA7385 (1) TDA7388 (1) TDA7391 (1) TDA7393 (1) TDA7394 (1) TDA7396 (1) TDA7430 (1) TDA7433 (1) TDA7443 (1) TDA7451 (1) TDA7462D (1) TDA7468 (1) TDA7469 (1) TDA7476 (1) TDA7480 (1) TDA7482 (1) TDA7494 (1) TDA7495 (1) TDA7496 (1) TDA7497 (1) TDA7497S (1) TDA7499 (1) TDA7502 (1) TDA7560 (1) TDA7561 (1) TDA7562 (1) TDA7563 (1) TDA7563B (1) TDA7564 (1) TDA7564B (1) TDA7565 (1) TDA7566 (1) TDA7567 (1) TDA7572 (1) TDA7575 (1) TDA7594 (1) TDA8426 (1) TDA8496 (1) TDA8510J (1) TDA8511J (1) TDA8512J (1) TDA8542 (1) TDA8543 (1) TDA8547 (1) TDA8551 (1) TDA8552T (1) TDA8552TS (1) TDA8559T (1) TDA8560Q (1) TDA8561Q (1) TDA8563AQ (1) TDA8564Q (1) TDA8565Q (1) TDA8566 (1) TDA8566TH1 (1) TDA8568Q (1) TDA8569Q (1) TDA8571J (1) TDA8576 (1) TDA8580 (1) TDA8581 (1) TDA8588J (1) TDA8591 TDA8591J (1) TDA8593J (1) TDA8594 (1) TDA8595 (1) TDA8596 (1) TDA8851 (1) TDA8920 (1) TDA8925 (1) TDA8926J (1) TDA8927 (1) TDA8927/TDA8929 (1) TDA8928 (1) TDA8932 (1) TDA8932B (1) TDA8943 (1) TDA8944 (1) TDA8946 (1) TDA8947J (1) TDA8950 (1) TDA8954 (1) TDA9610H (1) TDA9821 (1) TDA9830 (1) TDA9847 (1) TDA9852 (1) TDA9853H (1) TDA9861 (1) TDA9873 (1) TDA9874 (1) TDA9875 (1) TDA9880 (1) TDA9887 (1) TDB7910 (1) TEA6360 (1) TL071 (1) TL072 (1) TMPA401DM (1) TOP 10 (1) TP2350B (1) TPA2000D2 (1) TPA3122D2 (1) TTL (1) TV (1) TV application (1) TV sound processor (1) TV/FM (1) Telephone Headphone (1) Thermal Shutdown (1) Thermal protector (1) Tone Control Circuit (1) Tone Controls (1) Tone-Control (1) TopoR (1) Triple Amplifier (1) Tunable bandpass filters variable resistors (1) UART (1) UPC1230H2 (1) USB Powered Stereo (1) VCRs (1) VTR (1) VU Level (1) VU meter (1) Vocal Fader (1) Voice Canceller (1) Voltage (1) Voltage Converter (1) Wire (1) Wireless (1) Wireless am microphone (1) acoustic guitar (1) amplifier for headphone (1) audio HDMI interface (1) audio panoramic interface (1) audio power amplifier ic (1) ba526 (1) band-pass (1) bass boost amplifiers (1) battery (1) cheap guitar amps (1) circuit Schematic (1) computer speakers (1) decoder Circuit (1) demodulators AM (1) diagnostic facility (1) effects loop guitar (1) electric guitar (1) electronic project (1) fault protection (1) filter-free class-D (1) gibson guitars (1) guitar amp amazon (1) guitar amp marshall (1) guitar amp reviews (1) guitar amplifier olx (1) guitar amplifier price (1) guitar amps brands (1) guitar ams (1) guitar parts (1) guitar tube amps (1) ha13128 (1) headphone amplifier circuit using op-amp (1) high-performance (1) home audio amplifier (1) ic (1) lights upon detection (1) lm4702 bridge amplifier (1) lm4702 datasheet (1) lm4702 equivalent (1) lm4702 mosfet amplifier (1) lm4702 pcb (1) lm4702 price (1) lm4702 replacement (1) load detection (1) low pass subwoofer circuit diagram (1) low voltage (1) magnet (1) mono BTL amplifier (1) mono bridge amplifier (1) mosfet amplifier circuit for subwoofer (1) mosfet power amplifier circuit (1) muting (1) new amp (1) nte1165 (1) ohmmeter arduino (1) outdoor speakers (1) pc speakers (1) playback (1) po (1) power amplifier with distortion detector (1) power guitar amplifier (1) preamp gain guitar (1) satellite (1) simple headphone amplifier circuit (1) single-in-line (1) sound decoder circuit (1) speaker stands (1) stereo 175 watt amplifier (1) stereo VU meter (1) stereo headphone amplifier circuit (1) stereo indicator (1) stereo power meter (1) stereo tone control (1) stereo tube amplifier (1) subwoofer circuit diagram pdf (1) subwoofer design software (1) subwoofer filter board (1) subwoofer filter circuit diagram (1) subwoofer filter circuit for tda7294 (1) subwoofer filter circuit using lm324 (1) subwoofer filter circuit using op-amp tl072 (1) subwoofer filter kit (1) subwoofer filter subwoofer filter circuit using lm324 (1) subwoofers and amplifiers (1) symmetrical power supply (1) tda2030 circuit (1) tda2030 ic (1) tda2030 pdf (1) tda2030 pin configuration (1) tda2030 pinout (1) tda2030 power supply (1) tda2030 price (1) tda2030 subwoofer amplifier circuit (1) tda7265 amp circuit (1) tda7265 amplifier circuit (1) tda7265 equivalent (1) tda7265 pcb layout (1) tda7265 power supply (1) tda7265 single supply (1) tda7265 subwoofer circuit diagram (1) tda7265 voltage (1) tda8946j equivalent (1) tda8947j circuit diagram (1) tda8947j equivalent (1) tda8947j pinout (1) tda8947j price (1) tda8947j schematic (1) two-channel audio amplifier (1) uPC1032H (1) uPC1188H (1) voltage regulator (1)