Skip to main content

Subwoofer Design - Bandpass Dual Chamber

Bandpass Dual Chamber Basic Theory:

The front and rear of the driver are mounted in separate enclosures and tuned to specific calculated values. Resultant output is suppose to be better than any of the other designs mentioned previously. Bose owns the rights to the exact details behind this design. They explain the theory like this, "The low-frequency speaker drivers are located between separate acoustic compression chambers inside a patented Bose Acoustimass module. As each speaker cone moves, it excites air in the chambers. Trapped in the chamber, this air acts as an acoustic spring, which interacts with the air in the port to produce more low-frequency sound with less power. The system is more efficient and requires less cone motion, which in turn produces less distortion. In the event that any otherwise audible distortion is produced, the patented design traps it inside the acoustic chambers -- so it never enters the room. The result is an Acoustimass module with no audible distortion that can be located anywhere in the listening area.

Bandpass Dual Chamber Advandages:
More efficient system within its bandpass. More control over cone movement. Less audible distortion. This doesn't necessarily mean that there is a true reduction in distortion from the driver, but that any distortion that is present form the driver can't be heard as well due to the chambers acting as filters on any unwanted noise. My opinion only.

Bandpass Dual Chamber Disadvandages:
Combined volume of both chambers may result in large overall enclosures. Very difficult to design properly. You may have to experiment a great deal before getting this design to sound acceptable. Results may vary substantially due to misalignment of both front and rear chambers as well as tuning frequency of each chamber. Drivers can be easily blown due to high compression factors because of lowered cone motion and thereby exceeding the thermal limits of the driver before exceeding its mechanical limits. The driver may in fact tear itself to pieces. There are no exact parameters or calculations for designing 6th order bandpass enclosures due to the patent owned by Bose. So if you build one, you're basically on your own. Original article sourse is danmarx.org.

Comments

Popular posts from this blog

One Chip AM/FM Radio with Audio Power Amplifier

Description: The integrated circuit TDA1083 includes, with exception  of the FM front end, a complete AM-/FM-radio-circuit  with audio power amplifier. An internal Z-diode  stabilizes the supply voltage at VS 13 V, which allows  with the aid of a resistor and a rectifier, the circuit to be  driven by a higher external supply voltage. Features: Large supply voltage range VS = 3 to 12 V High AM-Sensitivity Limiting threshold voltage Vi = 50 V Audio output power P0 = 0.7 W AFC-connection for VHF-tuner AM-FM switching without high frequency voltages Applications: AM-/FM- and audio-amplifier Circuit Diagram: Circuit diagram for One Chip AM/FM Radio with Audio Power Amplifier Datasheet for TDA1083:   Download

2 x 15 W stereo Bridge Tied Load (BTL) audio amplifier

General description: The TDA8946J is a dual-channel audio power amplifier with an output power of 2 × 15 W at an 8 Ω load and a 18 V supply. The circuit contains two Bridge Tied Load (BTL) amplifiers with an all-NPN output stage and standby/mute logic. The TDA8946J comes in a 17-pin DIL-bent-SIL (DBS) power package. The TDA8946J is printed-circuit board (PCB) compatible with all other types in the TDA894x family. One PCB footprint accommodates both the mono and the stereo products. Features: Few external components Fixed gain Standby and mute mode No on/off switching plops Low standby current High supply voltage ripple rejection Outputs short-circuit protected to ground, supply and across the load Thermally protected Printed-circuit board compatible Circuit Diagram: Circuit Diagram for 2 x 15 W stereo Bridge Tied Load (BTL) audio amplifier PCB layout: PCB layout TDA8946 Datasheet for TDA8946J:   Download

200W Hybrid Audio Amplifier Circuit

200W Hybrid Audio Amplifier Circuit - c onnecting two TDA2030 thru cheap power transistors we can create a amplifier wich can deliver a higher power. With the components value from the schematic the total amplifier gain is 32 dB. The speaker can be 2 ohm instead of 4 ohm if we use the TIP transistors. TDA 2030 is produced by SGS Ates and is a complete audio amplifier. AB class of the final amplifier cand deliver up to 14W on 4 ohm at a +-14V power supply. With a proper designed power supply this audio amplifier can output 200W. Active components: IC1, Ic2 TDA 2030 T1, T3 = BD 250, TIP 36 T2,T4 = BD 249, TIP 35 D1 … D4 = 1N4001 200W Hybrid Audio Amplifier Circuit